Given the root
of a Binary Search Tree (BST), convert it to a Greater Tree such that every key of the original BST is changed to the original key plus sum of all keys greater than the original key in BST.
As a reminder, a binary search tree is a tree that satisfies these constraints:
Note: This question is the same as 538: https://leetcode.com/problems/convert-bst-to-greater-tree/
Example 1:
Input: root = [4,1,6,0,2,5,7,null,null,null,3,null,null,null,8] Output: [30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]
Example 2:
Input: root = [0,null,1] Output: [1,null,1]
Example 3:
Input: root = [1,0,2] Output: [3,3,2]
Example 4:
Input: root = [3,2,4,1] Output: [7,9,4,10]
Constraints:
[1, 100]
.0 <= Node.val <= 100
root
is guaranteed to be a valid binary search tree.struct Solution;
use rustgym_util::*;
trait Inorder {
fn inorder(&mut self, sum: &mut i32);
}
impl Inorder for TreeLink {
fn inorder(&mut self, sum: &mut i32) {
if let Some(node) = self {
node.borrow_mut().right.inorder(sum);
*sum += node.borrow().val;
node.borrow_mut().val = *sum;
node.borrow_mut().left.inorder(sum);
}
}
}
impl Solution {
fn bst_to_gst(mut root: TreeLink) -> TreeLink {
let mut sum = 0;
root.inorder(&mut sum);
root
}
}
#[test]
fn test() {
let root = tree!(
4,
tree!(1, tree!(0), tree!(2, None, tree!(3))),
tree!(6, tree!(5), tree!(7, None, tree!(8)))
);
let res = tree!(
30,
tree!(36, tree!(36), tree!(35, None, tree!(33))),
tree!(21, tree!(26), tree!(15, None, tree!(8)))
);
assert_eq!(Solution::bst_to_gst(root), res);
}