1237. Find Positive Integer Solution for a Given Equation

Given a function  f(x, y) and a value z, return all positive integer pairs x and y where f(x,y) == z.

The function is constantly increasing, i.e.:

  • f(x, y) < f(x + 1, y)
  • f(x, y) < f(x, y + 1)

The function interface is defined like this: 

interface CustomFunction {
public:
  // Returns positive integer f(x, y) for any given positive integer x and y.
  int f(int x, int y);
};

For custom testing purposes you're given an integer function_id and a target z as input, where function_id represent one function from an secret internal list, on the examples you'll know only two functions from the list.  

You may return the solutions in any order.

 

Example 1:

Input: function_id = 1, z = 5
Output: [[1,4],[2,3],[3,2],[4,1]]
Explanation: function_id = 1 means that f(x, y) = x + y

Example 2:

Input: function_id = 2, z = 5
Output: [[1,5],[5,1]]
Explanation: function_id = 2 means that f(x, y) = x * y

 

Constraints:

  • 1 <= function_id <= 9
  • 1 <= z <= 100
  • It's guaranteed that the solutions of f(x, y) == z will be on the range 1 <= x, y <= 1000
  • It's also guaranteed that f(x, y) will fit in 32 bit signed integer if 1 <= x, y <= 1000

Rust Solution

struct Solution;

struct CustomFunction {
    fp: fn(i32, i32) -> i32,
}

impl CustomFunction {
    fn f(&self, x: i32, y: i32) -> i32 {
        (self.fp)(x, y)
    }
}

impl Solution {
    fn find_solution(customfunction: &CustomFunction, z: i32) -> Vec<Vec<i32>> {
        let mut res = vec![];
        for i in 0..1000 {
            for j in 0..1000 {
                let x = (i + 1) as i32;
                let y = (j + 1) as i32;
                if customfunction.f(x, y) == z {
                    res.push(vec![x, y]);
                }
            }
        }
        res
    }
}

#[test]
fn test() {
    let cf = CustomFunction { fp: |x, y| x + y };
    let z = 5;
    let res = vec_vec_i32![[1, 4], [2, 3], [3, 2], [4, 1]];
    assert_eq!(Solution::find_solution(&cf, z), res);
    let cf = CustomFunction { fp: |x, y| x * y };
    let z = 5;
    let res = vec_vec_i32![[1, 5], [5, 1]];
    assert_eq!(Solution::find_solution(&cf, z), res);
}

Having problems with this solution? Click here to submit an issue on github.