1260. Shift 2D Grid

Given a 2D `grid` of size `m x n` and an integer `k`. You need to shift the `grid` `k` times.

In one shift operation:

• Element at `grid[i][j]` moves to `grid[i][j + 1]`.
• Element at `grid[i][n - 1]` moves to `grid[i + 1][0]`.
• Element at `grid[m - 1][n - 1]` moves to `grid[0][0]`.

Return the 2D grid after applying shift operation `k` times.

Example 1:

```Input: `grid` = [[1,2,3],[4,5,6],[7,8,9]], k = 1
Output: [[9,1,2],[3,4,5],[6,7,8]]
```

Example 2:

```Input: `grid` = [[3,8,1,9],[19,7,2,5],[4,6,11,10],[12,0,21,13]], k = 4
Output: [[12,0,21,13],[3,8,1,9],[19,7,2,5],[4,6,11,10]]
```

Example 3:

```Input: `grid` = [[1,2,3],[4,5,6],[7,8,9]], k = 9
Output: [[1,2,3],[4,5,6],[7,8,9]]
```

Constraints:

• `m == grid.length`
• `n == grid[i].length`
• `1 <= m <= 50`
• `1 <= n <= 50`
• `-1000 <= grid[i][j] <= 1000`
• `0 <= k <= 100`

1260. Shift 2D Grid
``````struct Solution;

impl Solution {
fn shift_grid(mut grid: Vec<Vec<i32>>, k: i32) -> Vec<Vec<i32>> {
let n = grid.len();
let m = grid[0].len();
let mut a = vec![];
for i in 0..n {
for j in 0..m {
a.push(grid[i][j]);
}
}
let s = n * m;
let mut k = s - (k as usize) % s;
for i in 0..n {
for j in 0..m {
grid[i][j] = a[k % s];
k += 1;
}
}
grid
}
}

#[test]
fn test() {
let grid = vec_vec_i32![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
let k = 1;
let res: Vec<Vec<i32>> = vec_vec_i32![[9, 1, 2], [3, 4, 5], [6, 7, 8]];
assert_eq!(Solution::shift_grid(grid, k), res);
let grid = vec_vec_i32![[3, 8, 1, 9], [19, 7, 2, 5], [4, 6, 11, 10], [12, 0, 21, 13]];
let k = 4;
let res: Vec<Vec<i32>> =
vec_vec_i32![[12, 0, 21, 13], [3, 8, 1, 9], [19, 7, 2, 5], [4, 6, 11, 10]];
assert_eq!(Solution::shift_grid(grid, k), res);
}
``````