Given a m * n
matrix of ones and zeros, return how many square submatrices have all ones.
Example 1:
Input: matrix = [ [0,1,1,1], [1,1,1,1], [0,1,1,1] ] Output: 15 Explanation: There are 10 squares of side 1. There are 4 squares of side 2. There is 1 square of side 3. Total number of squares = 10 + 4 + 1 = 15.
Example 2:
Input: matrix = [ [1,0,1], [1,1,0], [1,1,0] ] Output: 7 Explanation: There are 6 squares of side 1. There is 1 square of side 2. Total number of squares = 6 + 1 = 7.
Constraints:
1 <= arr.length <= 300
1 <= arr[0].length <= 300
0 <= arr[i][j] <= 1
struct Solution;
impl Solution {
fn count_squares(mut matrix: Vec<Vec<i32>>) -> i32 {
let n = matrix.len();
let m = matrix[0].len();
let mut res = 0;
for i in 0..n {
for j in 0..m {
if matrix[i][j] == 1 {
matrix[i][j] = if i > 0 && j > 0 {
1 + [matrix[i - 1][j], matrix[i][j - 1], matrix[i - 1][j - 1]]
.iter()
.min()
.unwrap()
} else {
1
};
}
res += matrix[i][j];
}
}
res
}
}
#[test]
fn test() {
let matrix = vec_vec_i32![[0, 1, 1, 1], [1, 1, 1, 1], [0, 1, 1, 1]];
let res = 15;
assert_eq!(Solution::count_squares(matrix), res);
let matrix = vec_vec_i32![[1, 0, 1], [1, 1, 0], [1, 1, 0]];
let res = 7;
assert_eq!(Solution::count_squares(matrix), res);
}