m * n
matrix mat
and an integer K
, return a matrix answer
where each answer[i][j]
is the sum of all elements mat[r][c]
for i - K <= r <= i + K, j - K <= c <= j + K
, and (r, c)
is a valid position in the matrix.
Example 1:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 1 Output: [[12,21,16],[27,45,33],[24,39,28]]
Example 2:
Input: mat = [[1,2,3],[4,5,6],[7,8,9]], K = 2 Output: [[45,45,45],[45,45,45],[45,45,45]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n, K <= 100
1 <= mat[i][j] <= 100
struct Solution;
impl Solution {
fn matrix_block_sum(mat: Vec<Vec<i32>>, k: i32) -> Vec<Vec<i32>> {
let n = mat.len();
let m = mat[0].len();
let mut prefix: Vec<Vec<i32>> = vec![vec![0; m]; n];
let mut res: Vec<Vec<i32>> = vec![vec![0; m]; n];
for i in 0..n {
for j in 0..m {
prefix[i][j] += mat[i][j];
if i > 0 {
prefix[i][j] += prefix[i - 1][j];
}
if j > 0 {
prefix[i][j] += prefix[i][j - 1];
}
if i > 0 && j > 0 {
prefix[i][j] -= prefix[i - 1][j - 1];
}
}
}
for i in 0..n {
for j in 0..m {
let l = j as i32 - k;
let r = j as i32 + k;
let t = i as i32 - k;
let b = i as i32 + k;
let l = if l < 0 { 0 } else { l as usize };
let r = if r >= m as i32 { m - 1 } else { r as usize };
let t = if t < 0 { 0 } else { t as usize };
let b = if b >= n as i32 { n - 1 } else { b as usize };
res[i][j] = Self::sum(t, l, b, r, &prefix);
}
}
res
}
fn sum(t: usize, l: usize, b: usize, r: usize, prefix: &[Vec<i32>]) -> i32 {
let mut res = prefix[b][r];
if l > 0 {
res -= prefix[b][l - 1];
}
if t > 0 {
res -= prefix[t - 1][r];
}
if l > 0 && t > 0 {
res += prefix[t - 1][l - 1];
}
res
}
}
#[test]
fn test() {
let mat = vec_vec_i32![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
let k = 1;
let res = vec_vec_i32![[12, 21, 16], [27, 45, 33], [24, 39, 28]];
assert_eq!(Solution::matrix_block_sum(mat, k), res);
let mat = vec_vec_i32![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
let k = 2;
let res = vec_vec_i32![[45, 45, 45], [45, 45, 45], [45, 45, 45]];
assert_eq!(Solution::matrix_block_sum(mat, k), res);
}