1362. Closest Divisors

Given an integer num, find the closest two integers in absolute difference whose product equals num + 1 or num + 2.

Return the two integers in any order.

 

Example 1:

Input: num = 8
Output: [3,3]
Explanation: For num + 1 = 9, the closest divisors are 3 & 3, for num + 2 = 10, the closest divisors are 2 & 5, hence 3 & 3 is chosen.

Example 2:

Input: num = 123
Output: [5,25]

Example 3:

Input: num = 999
Output: [40,25]

 

Constraints:

  • 1 <= num <= 10^9

Rust Solution

struct Solution;

impl Solution {
    fn closest_divisors(num: i32) -> Vec<i32> {
        for i in (0..=((num + 2) as f64).sqrt() as i32).rev() {
            if (num + 1) % i == 0 {
                return vec![(num + 1) / i, i];
            }
            if (num + 2) % i == 0 {
                return vec![(num + 2) / i, i];
            }
        }
        vec![]
    }
}

#[test]
fn test() {
    let num = 8;
    let res = vec![3, 3];
    assert_eq!(Solution::closest_divisors(num), res);
    let num = 123;
    let res = vec![25, 5];
    assert_eq!(Solution::closest_divisors(num), res);
    let num = 999;
    let res = vec![40, 25];
    assert_eq!(Solution::closest_divisors(num), res);
}

Having problems with this solution? Click here to submit an issue on github.