## 1689. Partitioning Into Minimum Number Of Deci-Binary Numbers

A decimal number is called **deci-binary** if each of its digits is either `0`

or `1`

without any leading zeros. For example, `101`

and `1100`

are **deci-binary**, while `112`

and `3001`

are not.

Given a string `n`

that represents a positive decimal integer, return *the minimum number of positive deci-binary numbers needed so that they sum up to *

`n`

*.*

**Example 1:**

Input:n = "32"Output:3Explanation:10 + 11 + 11 = 32

**Example 2:**

Input:n = "82734"Output:8

**Example 3:**

Input:n = "27346209830709182346"Output:9

**Constraints:**

`1 <= n.length <= 10`

^{5}`n`

consists of only digits.`n`

does not contain any leading zeros and represents a positive integer.

## Rust Solution

```
struct Solution;
impl Solution {
fn min_partitions(n: String) -> i32 {
let mut res = 0;
for b in n.bytes() {
res = res.max(b - b'0');
}
res as i32
}
}
#[test]
fn test() {
let n = "32".to_string();
let res = 3;
assert_eq!(Solution::min_partitions(n), res);
}
```

Having problems with this solution? Click here to submit an issue on github.