There is a **hidden** integer array `arr`

that consists of `n`

non-negative integers.

It was encoded into another integer array `encoded`

of length `n - 1`

, such that `encoded[i] = arr[i] XOR arr[i + 1]`

. For example, if `arr = [1,0,2,1]`

, then `encoded = [1,2,3]`

.

You are given the `encoded`

array. You are also given an integer `first`

, that is the first element of `arr`

, i.e. `arr[0]`

.

Return *the original array* `arr`

. It can be proved that the answer exists and is unique.

**Example 1:**

Input:encoded = [1,2,3], first = 1Output:[1,0,2,1]Explanation:If arr = [1,0,2,1], then first = 1 and encoded = [1 XOR 0, 0 XOR 2, 2 XOR 1] = [1,2,3]

**Example 2:**

Input:encoded = [6,2,7,3], first = 4Output:[4,2,0,7,4]

**Constraints:**

`2 <= n <= 10`

^{4}`encoded.length == n - 1`

`0 <= encoded[i] <= 10`

^{5}`0 <= first <= 10`

^{5}

```
struct Solution;
impl Solution {
fn decode(encoded: Vec<i32>, first: i32) -> Vec<i32> {
let n = encoded.len();
let mut res = vec![first];
for i in 0..n {
res.push(res[i] ^ encoded[i]);
}
res
}
}
#[test]
fn test() {
let encoded = vec![1, 2, 3];
let first = 1;
let res = vec![1, 0, 2, 1];
assert_eq!(Solution::decode(encoded, first), res);
let encoded = vec![6, 2, 7, 3];
let first = 4;
let res = vec![4, 2, 0, 7, 4];
assert_eq!(Solution::decode(encoded, first), res);
}
```