1800. Maximum Ascending Subarray Sum

Given an array of positive integers `nums`, return the maximum possible sum of an ascending subarray in `nums`.

A subarray is defined as a contiguous sequence of numbers in an array.

A subarray `[numsl, numsl+1, ..., numsr-1, numsr]` is ascending if for all `i` where `l <= i < r`, `numsi < numsi+1`. Note that a subarray of size `1` is ascending.

Example 1:

```Input: nums = [10,20,30,5,10,50]
Output: 65
Explanation: [5,10,50] is the ascending subarray with the maximum sum of 65.
```

Example 2:

```Input: nums = [10,20,30,40,50]
Output: 150
Explanation: [10,20,30,40,50] is the ascending subarray with the maximum sum of 150.
```

Example 3:

```Input: nums = [12,17,15,13,10,11,12]
Output: 33
Explanation: [10,11,12] is the ascending subarray with the maximum sum of 33.
```

Example 4:

```Input: nums = [100,10,1]
Output: 100
```

Constraints:

• `1 <= nums.length <= 100`
• `1 <= nums[i] <= 100`

1800. Maximum Ascending Subarray Sum
``````struct Solution;

impl Solution {
fn max_ascending_sum(nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut max = nums[0];
let mut sum = nums[0];
for i in 1..n {
if nums[i] > nums[i - 1] {
sum += nums[i];
} else {
sum = nums[i];
}
max = max.max(sum);
}
max
}
}

#[test]
fn test() {
let nums = vec![10, 20, 30, 5, 10, 50];
let res = 65;
assert_eq!(Solution::max_ascending_sum(nums), res);
let nums = vec![10, 20, 30, 40, 50];
let res = 150;
assert_eq!(Solution::max_ascending_sum(nums), res);
let nums = vec![12, 17, 15, 13, 10, 11, 12];
let res = 33;
assert_eq!(Solution::max_ascending_sum(nums), res);
}
``````