Given a 0-indexed integer array nums
, return the smallest index i
of nums
such that i mod 10 == nums[i]
, or -1
if such index does not exist.
x mod y
denotes the remainder when x
is divided by y
.
Example 1:
Input: nums = [0,1,2] Output: 0 Explanation: i=0: 0 mod 10 = 0 == nums[0]. i=1: 1 mod 10 = 1 == nums[1]. i=2: 2 mod 10 = 2 == nums[2]. All indices have i mod 10 == nums[i], so we return the smallest index 0.
Example 2:
Input: nums = [4,3,2,1] Output: 2 Explanation: i=0: 0 mod 10 = 0 != nums[0]. i=1: 1 mod 10 = 1 != nums[1]. i=2: 2 mod 10 = 2 == nums[2]. i=3: 3 mod 10 = 3 != nums[3]. 2 is the only index which has i mod 10 == nums[i].
Example 3:
Input: nums = [1,2,3,4,5,6,7,8,9,0] Output: -1 Explanation: No index satisfies i mod 10 == nums[i].
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 9
struct Solution;
impl Solution {
fn smallest_equal(nums: Vec<i32>) -> i32 {
let n = nums.len();
for i in 0..n {
if i as i32 % 10 == nums[i] {
return i as i32;
}
}
-1
}
}
#[test]
fn test() {
let nums = vec![0, 1, 2];
let res = 0;
assert_eq!(Solution::smallest_equal(nums), res);
let nums = vec![4, 3, 2, 1];
let res = 2;
assert_eq!(Solution::smallest_equal(nums), res);
let nums = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 0];
let res = -1;
assert_eq!(Solution::smallest_equal(nums), res);
}