209. Minimum Size Subarray Sum
Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
Example:
Input:s = 7, nums = [2,3,1,2,4,3]
Output: 2 Explanation: the subarray[4,3]
has the minimal length under the problem constraint.
Follow up:
If you have figured out the O(n) solution, try coding another solution of which the time complexity is O(n log n).
Rust Solution
struct Solution;
impl Solution {
fn min_sub_array_len(s: i32, nums: Vec<i32>) -> i32 {
let n = nums.len();
let mut res = std::usize::MAX;
let mut sum = 0;
let mut l = 0;
for r in 0..n {
sum += nums[r];
while sum >= s {
res = usize::min(r - l + 1, res);
sum -= nums[l];
l += 1;
}
}
if res == usize::MAX {
0
} else {
res as i32
}
}
}
#[test]
fn test() {
let s = 7;
let nums = vec![2, 3, 1, 2, 4, 3];
let res = 2;
assert_eq!(Solution::min_sub_array_len(s, nums), res);
let s = 4;
let nums = vec![1, 4, 4];
let res = 1;
assert_eq!(Solution::min_sub_array_len(s, nums), res);
}
Having problems with this solution? Click here to submit an issue on github.