Given an array of integers nums
sorted in ascending order, find the starting and ending position of a given target
value.
If target
is not found in the array, return [-1, -1]
.
Follow up: Could you write an algorithm with O(log n)
runtime complexity?
Example 1:
Input: nums = [5,7,7,8,8,10], target = 8 Output: [3,4]
Example 2:
Input: nums = [5,7,7,8,8,10], target = 6 Output: [-1,-1]
Example 3:
Input: nums = [], target = 0 Output: [-1,-1]
Constraints:
0 <= nums.length <= 105
-109 <= nums[i] <= 109
nums
is a non-decreasing array.-109 <= target <= 109
struct Solution;
impl Solution {
fn search_range(nums: Vec<i32>, target: i32) -> Vec<i32> {
let n = nums.len();
match nums.binary_search(&target) {
Ok(i) => {
let mut l = i;
let mut r = i;
while l > 0 && nums[l - 1] == target {
l -= 1;
}
while r + 1 < n && nums[r + 1] == target {
r += 1;
}
vec![l as i32, r as i32]
}
Err(_) => vec![-1, -1],
}
}
}
#[test]
fn test() {
let nums = vec![5, 7, 7, 8, 8, 10];
let target = 8;
let res = vec![3, 4];
assert_eq!(Solution::search_range(nums, target), res);
}