497. Random Point in Non-overlapping Rectangles

Given a list of non-overlapping axis-aligned rectangles rects, write a function pick which randomly and uniformily picks an integer point in the space covered by the rectangles.


  1. An integer point is a point that has integer coordinates. 
  2. A point on the perimeter of a rectangle is included in the space covered by the rectangles. 
  3. ith rectangle = rects[i][x1,y1,x2,y2], where [x1, y1] are the integer coordinates of the bottom-left corner, and [x2, y2] are the integer coordinates of the top-right corner.
  4. length and width of each rectangle does not exceed 2000.
  5. 1 <= rects.length <= 100
  6. pick return a point as an array of integer coordinates [p_x, p_y]
  7. pick is called at most 10000 times.

Example 1:


Example 2:


Explanation of Input Syntax:

The input is two lists: the subroutines called and their arguments. Solution's constructor has one argument, the array of rectangles rects. pick has no arguments. Arguments are always wrapped with a list, even if there aren't any.


497. Random Point in Non-overlapping Rectangles
use rand::distributions::WeightedIndex;
use rand::prelude::*;

struct Solution {
    rng: ThreadRng,
    rects: Vec<Vec<i32>>,
    size: usize,
    dist: WeightedIndex<i32>,

impl Solution {
    fn new(rects: Vec<Vec<i32>>) -> Self {
        let rng = thread_rng();
        let size = rects.len();
        let weights: Vec<i32> = rects
            .map(|v| (v[2] - v[0] + 1) * (v[3] - v[1] + 1))
        let dist = WeightedIndex::new(weights).unwrap();
        Solution {

    fn pick(&mut self) -> Vec<i32> {
        let rect = &self.rects[self.rng.sample(&self.dist)];
        let x = self.rng.gen_range(rect[0], rect[2] + 1);
        let y = self.rng.gen_range(rect[1], rect[3] + 1);
        vec![x, y]