528. Random Pick with Weight

You are given an array of positive integers w where w[i] describes the weight of ith index (0-indexed).

We need to call the function pickIndex() which randomly returns an integer in the range [0, w.length - 1]pickIndex() should return the integer proportional to its weight in the w array. For example, for w = [1, 3], the probability of picking the index 0 is 1 / (1 + 3) = 0.25 (i.e 25%) while the probability of picking the index 1 is 3 / (1 + 3) = 0.75 (i.e 75%).

More formally, the probability of picking index i is w[i] / sum(w).

 

Example 1:

Input
["Solution","pickIndex"]
[[[1]],[]]
Output
[null,0]

Explanation
Solution solution = new Solution([1]);
solution.pickIndex(); // return 0. Since there is only one single element on the array the only option is to return the first element.

Example 2:

Input
["Solution","pickIndex","pickIndex","pickIndex","pickIndex","pickIndex"]
[[[1,3]],[],[],[],[],[]]
Output
[null,1,1,1,1,0]

Explanation
Solution solution = new Solution([1, 3]);
solution.pickIndex(); // return 1. It's returning the second element (index = 1) that has probability of 3/4.
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 1
solution.pickIndex(); // return 0. It's returning the first element (index = 0) that has probability of 1/4.

Since this is a randomization problem, multiple answers are allowed so the following outputs can be considered correct :
[null,1,1,1,1,0]
[null,1,1,1,1,1]
[null,1,1,1,0,0]
[null,1,1,1,0,1]
[null,1,0,1,0,0]
......
and so on.

 

Constraints:

  • 1 <= w.length <= 10000
  • 1 <= w[i] <= 10^5
  • pickIndex will be called at most 10000 times.

Rust Solution

use rand::distributions::WeightedIndex;
use rand::prelude::*;

struct Solution {
    dist: WeightedIndex<i32>,
    rng: ThreadRng,
}

impl Solution {
    fn new(w: Vec<i32>) -> Self {
        let rng = thread_rng();
        let dist = WeightedIndex::new(w).unwrap();
        Solution { dist, rng }
    }

    fn pick_index(&mut self) -> i32 {
        self.rng.sample(&self.dist) as i32
    }
}

Having problems with this solution? Click here to submit an issue on github.