## 728. Self Dividing Numbers

A self-dividing number is a number that is divisible by every digit it contains.

For example, 128 is a self-dividing number because `128 % 1 == 0`, `128 % 2 == 0`, and `128 % 8 == 0`.

Also, a self-dividing number is not allowed to contain the digit zero.

Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.

Example 1:

```Input:
left = 1, right = 22
Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]
```

Note:

• The boundaries of each input argument are `1 <= left <= right <= 10000`.
• ## Rust Solution

``````struct Solution;

impl Solution {
fn is_self_dividing(x: i32) -> bool {
let mut n = x;
while n > 0 {
let last = n % 10;
if last == 0 {
return false;
} else {
if x % last != 0 {
return false;
}
n /= 10;
}
}
true
}

fn self_dividing_numbers(left: i32, right: i32) -> Vec<i32> {
let mut res: Vec<i32> = vec![];
for i in left..=right {
if Self::is_self_dividing(i) {
res.push(i);
}
}
res
}
}

#[test]
fn test() {
let left = 1;
let right = 22;
let res = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22];
assert_eq!(Solution::self_dividing_numbers(left, right), res);
}
``````

Having problems with this solution? Click here to submit an issue on github.