728. Self Dividing Numbers
A self-dividing number is a number that is divisible by every digit it contains.
For example, 128 is a self-dividing number because 128 % 1 == 0
, 128 % 2 == 0
, and 128 % 8 == 0
.
Also, a self-dividing number is not allowed to contain the digit zero.
Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.
Example 1:
Input: left = 1, right = 22 Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]
Note:
1 <= left <= right <= 10000
.Rust Solution
struct Solution;
impl Solution {
fn is_self_dividing(x: i32) -> bool {
let mut n = x;
while n > 0 {
let last = n % 10;
if last == 0 {
return false;
} else {
if x % last != 0 {
return false;
}
n /= 10;
}
}
true
}
fn self_dividing_numbers(left: i32, right: i32) -> Vec<i32> {
let mut res: Vec<i32> = vec![];
for i in left..=right {
if Self::is_self_dividing(i) {
res.push(i);
}
}
res
}
}
#[test]
fn test() {
let left = 1;
let right = 22;
let res = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22];
assert_eq!(Solution::self_dividing_numbers(left, right), res);
}
Having problems with this solution? Click here to submit an issue on github.