728. Self Dividing Numbers

A self-dividing number is a number that is divisible by every digit it contains.

For example, 128 is a self-dividing number because 128 % 1 == 0, 128 % 2 == 0, and 128 % 8 == 0.

Also, a self-dividing number is not allowed to contain the digit zero.

Given a lower and upper number bound, output a list of every possible self dividing number, including the bounds if possible.

Example 1:

Input: 
left = 1, right = 22
Output: [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22]

Note:

  • The boundaries of each input argument are 1 <= left <= right <= 10000.
  • Rust Solution

    struct Solution;
    
    impl Solution {
        fn is_self_dividing(x: i32) -> bool {
            let mut n = x;
            while n > 0 {
                let last = n % 10;
                if last == 0 {
                    return false;
                } else {
                    if x % last != 0 {
                        return false;
                    }
                    n /= 10;
                }
            }
            true
        }
    
        fn self_dividing_numbers(left: i32, right: i32) -> Vec<i32> {
            let mut res: Vec<i32> = vec![];
            for i in left..=right {
                if Self::is_self_dividing(i) {
                    res.push(i);
                }
            }
            res
        }
    }
    
    #[test]
    fn test() {
        let left = 1;
        let right = 22;
        let res = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22];
        assert_eq!(Solution::self_dividing_numbers(left, right), res);
    }
    

    Having problems with this solution? Click here to submit an issue on github.