## 780. Reaching Points

A move consists of taking a point `(x, y)` and transforming it to either `(x, x+y)` or `(x+y, y)`.

Given a starting point `(sx, sy)` and a target point `(tx, ty)`, return `True` if and only if a sequence of moves exists to transform the point `(sx, sy)` to `(tx, ty)`. Otherwise, return `False`.

```Examples:
Input: sx = 1, sy = 1, tx = 3, ty = 5
Output: True
Explanation:
One series of moves that transforms the starting point to the target is:
(1, 1) -> (1, 2)
(1, 2) -> (3, 2)
(3, 2) -> (3, 5)

Input: sx = 1, sy = 1, tx = 2, ty = 2
Output: False

Input: sx = 1, sy = 1, tx = 1, ty = 1
Output: True

```

Note:

• `sx, sy, tx, ty` will all be integers in the range `[1, 10^9]`.

## Rust Solution

``````struct Solution;

impl Solution {
fn reaching_points(sx: i32, sy: i32, mut tx: i32, mut ty: i32) -> bool {
while sx < tx && sy < ty {
if tx < ty {
ty %= tx;
} else {
tx %= ty;
}
}
sx == tx && sy <= ty && (ty - sy) % sx == 0 || sy == ty && sx <= tx && (tx - sx) % sy == 0
}
}

#[test]
fn test() {
let sx = 1;
let sy = 1;
let tx = 3;
let ty = 5;
let res = true;
assert_eq!(Solution::reaching_points(sx, sy, tx, ty), res);
let sx = 1;
let sy = 1;
let tx = 2;
let ty = 2;
let res = false;
assert_eq!(Solution::reaching_points(sx, sy, tx, ty), res);
let sx = 1;
let sy = 1;
let tx = 1;
let ty = 1;
let res = true;
assert_eq!(Solution::reaching_points(sx, sy, tx, ty), res);
}
``````

Having problems with this solution? Click here to submit an issue on github.