780. Reaching Points
A move consists of taking a point (x, y)
and transforming it to either (x, x+y)
or (x+y, y)
.
Given a starting point (sx, sy)
and a target point (tx, ty)
, return True
if and only if a sequence of moves exists to transform the point (sx, sy)
to (tx, ty)
. Otherwise, return False
.
Examples: Input: sx = 1, sy = 1, tx = 3, ty = 5 Output: True Explanation: One series of moves that transforms the starting point to the target is: (1, 1) -> (1, 2) (1, 2) -> (3, 2) (3, 2) -> (3, 5) Input: sx = 1, sy = 1, tx = 2, ty = 2 Output: False Input: sx = 1, sy = 1, tx = 1, ty = 1 Output: True
Note:
sx, sy, tx, ty
will all be integers in the range[1, 10^9]
.
Rust Solution
struct Solution;
impl Solution {
fn reaching_points(sx: i32, sy: i32, mut tx: i32, mut ty: i32) -> bool {
while sx < tx && sy < ty {
if tx < ty {
ty %= tx;
} else {
tx %= ty;
}
}
sx == tx && sy <= ty && (ty - sy) % sx == 0 || sy == ty && sx <= tx && (tx - sx) % sy == 0
}
}
#[test]
fn test() {
let sx = 1;
let sy = 1;
let tx = 3;
let ty = 5;
let res = true;
assert_eq!(Solution::reaching_points(sx, sy, tx, ty), res);
let sx = 1;
let sy = 1;
let tx = 2;
let ty = 2;
let res = false;
assert_eq!(Solution::reaching_points(sx, sy, tx, ty), res);
let sx = 1;
let sy = 1;
let tx = 1;
let ty = 1;
let res = true;
assert_eq!(Solution::reaching_points(sx, sy, tx, ty), res);
}
Having problems with this solution? Click here to submit an issue on github.