## 832. Flipping an Image

Given a binary matrix `A`, we want to flip the image horizontally, then invert it, and return the resulting image.

To flip an image horizontally means that each row of the image is reversed.  For example, flipping `[1, 1, 0]` horizontally results in `[0, 1, 1]`.

To invert an image means that each `0` is replaced by `1`, and each `1` is replaced by `0`. For example, inverting `[0, 1, 1]` results in `[1, 0, 0]`.

Example 1:

```Input: [[1,1,0],[1,0,1],[0,0,0]]
Output: [[1,0,0],[0,1,0],[1,1,1]]
Explanation: First reverse each row: [[0,1,1],[1,0,1],[0,0,0]].
Then, invert the image: [[1,0,0],[0,1,0],[1,1,1]]
```

Example 2:

```Input: [[1,1,0,0],[1,0,0,1],[0,1,1,1],[1,0,1,0]]
Output: [[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]
Explanation: First reverse each row: [[0,0,1,1],[1,0,0,1],[1,1,1,0],[0,1,0,1]].
Then invert the image: [[1,1,0,0],[0,1,1,0],[0,0,0,1],[1,0,1,0]]
```

Notes:

• `1 <= A.length = A[0].length <= 20`
• `0 <= A[i][j] <= 1`

## Rust Solution

``````struct Solution;

impl Solution {
fn flip_and_invert_image(mut a: Vec<Vec<i32>>) -> Vec<Vec<i32>> {
let n = a.len();
for i in 0..n {
let mut l = 0;
let mut r = n - 1;
while l < r {
a[i].swap(l, r);
l += 1;
r -= 1;
}
for j in 0..n {
a[i][j] = 1 - a[i][j];
}
}
a
}
}

#[test]
fn test() {
let a: Vec<Vec<i32>> = vec_vec_i32![[1, 1, 0], [1, 0, 1], [0, 0, 0]];
let b: Vec<Vec<i32>> = vec_vec_i32![[1, 0, 0], [0, 1, 0], [1, 1, 1]];
assert_eq!(Solution::flip_and_invert_image(a), b);
let a: Vec<Vec<i32>> = vec_vec_i32![[1, 1, 0, 0], [1, 0, 0, 1], [0, 1, 1, 1], [1, 0, 1, 0]];
let b: Vec<Vec<i32>> = vec_vec_i32![[1, 1, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1], [1, 0, 1, 0]];
assert_eq!(Solution::flip_and_invert_image(a), b);
}
``````

Having problems with this solution? Click here to submit an issue on github.